Investigation of Quantum and Classical Models for Molecular Relaxation Using the Direct Simulation Monte Carlo Method
نویسندگان
چکیده
It is widely known that losses due to viscous, thermal and molecular relaxation play an important role in sound propagation. Traditionally, acoustics is concerned with the treatment of the fluid as a (linear) continuum using macroscopic quantities such as velocity and pressure as dependent variables. However, the continuum model has its limitations and the model breaks down for Knudsen numbers (Kn) greater than roughly 0.05, where Kn is defined as the ratio of mean free path to wavelength. Particle or Boltzmann equation methods are necessary for, but not limited to, problems with Kn > 0.05. In our studies we have used a particle method, Bird’s direct simulation Monte Carlo method, to study acoustics which allows us to simulate real gas effects for all values of Kn with a molecular model that continuum methods cannot offer. Direct simulation Monte Carlo allows us to explore acoustics at varying temperatures, molecular composition, Knudsen numbers, and amplitude. Our current simulations of gas mixtures have employed different methods to model the internal degrees of freedom in molecules and the exchange of translational, rotational and vibrational energies in collisions. One of these methods is the fully classical rigid-rotor/harmonic-oscillator model for rotation and vibration developed by Borgnakke and Larsen. A second takes into account the discrete quantum energy levels for vibration with rotation treated classically. This method gives a more realistic representation of the internal structure of diatomic and polyatomic molecules. In our studies, we have investigated the application of these methods with the direct simulation at the molecular level of the propagation of sound and its attenuation along with their dependence on temperature for diatomic nitrogen systems.
منابع مشابه
Investigation of Quantum and Classical Models for Molecular Relaxation Using the Direct Simulation Monte Carlo (dsmc) Method
It is widely known that losses due to viscous, thermal and molecular relaxation play an important role in sound propagation. Traditionally, acoustics is concerned with the treatment of the fluid as a (linear) continuum using macroscopic quantities such as velocity and pressure as dependent variables. However, the continuum model has its limitations and the model breaks down for Knudsen numbers ...
متن کاملInvestigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system
Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملSiemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code
Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...
متن کامل